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Due to the issue of deforestation and the pressure to avoid use of native forest resources for production of 
char, there is increasing requirement for the use of renewable materials and development of additional 
sustainable processes. Bamboo, a biomass that presents the property of fast growth, is an alternative to 
native or reforested wood. In this work the slow pyrolysis of a woody bamboo (species Dendrocalamus 
giganteus Munro) was studied, aiming the determination of biochar properties. The process was 
conducted in a fixed bed reactor at temperatures ranging from 300 to 600 °C and at a 10 °C/min heating 
rate. The thermal degradation behaviour of bamboo was investigated through thermogravimetric analysis 
(TGA/DTG). The bamboo biomass and the biochar were characterized by physical-chemical analysis in 
order to investigate the main changes caused by the pyrolysis process on biochar properties. The surface 
morphology of bamboo biomass and biochar was determined using scanning electron microscopy (SEM). 
Additionally, a discussion about the advantages and disadvantages of biochar production by slow pyrolysis 
is presented, taking into account the applied conventional methods in the process. Results revealed the 
advantage of pyrolysis process due to simultaneous biochar and bio-oil production. The bamboo biochar 
presents suitable properties for its use as energy source and for agricultural applications. Its high porosity 
and carbon content suggest its application as activated carbon after physical or chemical activation. 

1. Introduction 
Brazil is the largest producer of charcoal in the world, with nearly half of the woody biomass harvested for 
energy in Brazil being transformed into charcoal, mostly from eucalyptus plantations derived either from 
natural or planted forests. The primary use of charcoal has been as a source of heat and carbon in 
massive processing and metallurgical industries which are among the top wood fuel users (Bailis et al., 
2013). Brazil has abundant biomass sources, presenting the greatest bamboo diversity in America. Dwarf 
bamboos may be as little as 10 cm in height, but tall species may reach 15-20 m, and the largest known 
species (Dendrocalamus giganteus) grows up to 40 m in height and 30 cm in culm (stem) diameter. 
According to an experimental plantation of Dendrocalamous giganteus species developed in Sao Paulo 
State University (UNESP/Bauru), its average productivity is about 56 m³/ha/y, with  225 stems/ha/y in wet 
basis (Pereira and Beraldo, 2007). However, the productivity of bamboo plantations varies considerably 
depending on species, management and location. Very productive species may yield around 30 t/ha/y (dry 
material). Well-managed bamboo plantations yield in average 25 t/ha/y (dry material), according to NL 
agency (2013).  Bamboo, as a kind of wood, is mainly composted of hemicelluloses, cellulose and lignin 
that can produce higher value-added products by pyrolysis processes. Furthermore, it possesses many 
other advantages such as easy propagation, fast growth and low ash content (Scurlock et al., 2000). 
In Brazil, charcoal production takes place primarily through small earthen kilns and traditional “hot-tail” 
kilns. The efficiency of these kilns in producing charcoal can be 10-20 % (dry basis) for the earthen kilns 
and   25-30 % for “hot tail” kilns, leading to losses around 60-70 % of the input energy and consequently,  
release of high amounts of gases and other unburned hydrocarbons into the atmosphere (Bailis et al., 
2013). In order to reduce the environmental impact of charcoal using these traditional kilns, new 
alternatives can be implemented to convert biomass into valuable products. Slow pyrolysis is a 
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thermochemical decomposition process that takes place in the absence of oxygen and at a slow heating 
rate (approximately 10 °C/min) to produce a liquid phase (tar or hydrocarbon liquids and water), a carbon-
rich solid phase (charcoal) and non-condensable gases (CH4, CO2, CO, H2, etc.), as discussed in 
Demirbas (2004) and Balat et al. (2009).This slow heating rate leads to higher char yield than liquid and 
gaseous ones. Therefore, it is a recommended technology for biochar production (Bahng et al., 2009).  
Biochar originating from biomass is typically 20-40 % of dry lignocellulosic biomass. However, the yield 
and chemical properties of the pyrolysis products are strongly influenced by operating conditions during 
pyrolysis such as temperature, heating rate, holding times, particle size, atmosphere and feedstock (Lee et 
al., 2013a). Depending on the final use of biochar, the required properties of the material may be different. 
The primary use has been as fuel (charcoal) for heat production, for cooking and for heating (Lee et al., 
2013b). Biochar has a large microscopic surface area due to the micro pores developed during pyrolysis, 
and may be used as a soil amendment improving water infiltration, ion exchange capacity, nutrients 
retention and adsorption of pollutant (Thies and Rillig, 2009). Zhao et al. (2013) showed that both 
feedstock properties and production conditions affected the yield and properties of biochar. Enders et al. 
(2012) verified that biochars have widely varying properties, requiring more than proximate analysis for 
characterization. A combination of thermogravimetric analysis, pH and elemental (ultimate) analysis are 
necessary but not sufficient on their own to predict behavior of biochars in soils. 
This paper presents an experimental research of the slow pyrolysis of bamboo D. giganteus Munro aiming 
to determine biochar yield as a function of the final reactor temperature. Additionally, physical-chemical 
properties of the biochar produced at 500 °C are presented in order to verify its main characteristics and 
applications.  

2. Experimental  
2.1 Biomass samples  
The bamboo D. giganteus Munro was harvested at University of Campinas in Brazil. Tests were carried 
out using mature stem samples of 5 y age. Before the experiments, the sample was split into pieces of 
about 1 m and cut into blocks about 10 cm long to facilitate the milling process. All the feedstock was air-
dried until final moisture about 10 %. Raw biomass was ground in a hammer mill and then the particles 
were sieved by a vibrating screen and dried before the experiments were carried out. Table 1 shows the 
main characteristics of the studied biomass. 

Table 1:  Characteristics of the bamboo biomass  

Property Value 
Particle diameter (μm) 
Particle density (kg/m3) 

669 ± 1  
1,400 ± 10 

Bulk density (kg/m3) 146 ± 4 
High heating value (MJ/kg) 17.235 ± 0.143 
Proximate analysis (% wet basis)  
Moisture  
Fixed carbon  
Volatile  
Ash  

9.37 ± 0.80 
17.75 ± 0.40 
70.31 ± 0.44 
2.57 ± 0.41 

Elemental Analysis (%dry basis)  
C 39 ± 3 
H 6.1± 0.2 
N 
S 

0.6 ± 0.3 
0.018± 0.006 

Oa 54±3 
Structural Composition (% dry basis)  
Cellulose  47.5 ±0.4 
Hemicellulose  15.35 ±0.42 
Lignin  26.25±0.07 
Extractives 4.90 ±0.14 
Silica 0.7±0.0 
a By difference 

The proximate analysis of raw biomass was based on the ASTM standards methods (ASTM E871-82, 
ASTM E1755-01, ASTM E872-82). The structural composition was determined according to standards of 
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condenser (Tw,i at inlet and Tw,o at outlet) were also measured in order to control the vapour condensing 
process. In each test a sample of 200 g of bamboo particles was heated from room temperature to a final 
reactor temperature from 300 to 600 °C. The heating rate was 10 °C/min. The holding time at each tested 
final temperature was 15 min, thus the total time of each experiment varied from 42 min (300 °C) to 72 min 
(600 °C). The differences in heating times among tests at different temperatures were neglected as 
previous work of Ayllon et al. (2006) showed that the final reactor temperature is the main factor on the 
fixed bed pyrolysis process. After each test bio-char and bio-oil were collected from the reactor. The yield 
of the recovery biochar was determined gravimetrically by weighing, after reaching room temperature. The 
bio-oil product was heterogeneous and consisted of an aqueous and an oil phase. The gas yield was 
calculated by difference (mass balance in the system). 

2.3 Analysis of biochar  
Physical and chemical analyses were conducted for the biochar product generated at final reactor 
temperature of 500 °C. The density of biochar particles was measured by liquid picnometry using water as 
the displacement fluid. The bulk density of the loosely packed bed was measured by weighting the mass of 
char introduced in a calibrated volume.  
The analytical methods applied for char characterization were proximate analysis, high heating value 
(HHV) determination and elemental analysis. The analyses were performed in duplicate using standard 
methods. The proximate analysis was determined according to ASTM D1762-84 standard method. The 
HHV was determined using an IKA C2000 basic Oxygen Bomb Calorimeter following the ASTM D4809-00 
standard method.  The elemental analysis (CHN) was performed in duplicate using an Elemental Analyser 
(Perkin Elmer-Series II 2400).  
Morphological changes of biomass samples before and after pyrolysis process were observed by scanning 
electron microscopy (SEM). 

3. Result and discussion  
3.1 Pyrolysis  product yields 
Previous studies have shown  that the temperature of pyrolysis plays an important role on the yields of the 
liquid, gas and char products. The effect of the final reactor temperature on the production of bio-oil, 
biochar and gases from bamboo pyrolysis is shown in Figure 3, where it can be observed that bio-oil and 
char are the main products in the pyrolysis process. 
   

 

Figure 3:  Pyrolysis products yield vs reactor operating temperature  

The yield of char decreases as the temperature gets higher due to increased thermal degradation rate. A 
maximum biochar yield of 80 % was attained at 300 °C. The bio-oil yield increased until 500 °C, remaining 
practically constant after that. Secondary reactions of volatile compounds are also favored with the 
temperature increment resulting in a high gas yield. 

3.2 Bamboo char characterization  
The present study focuses on the properties of the biochar produced at final pyrolysis temperature of 500 
°C, considered the best condition regarding the liquid and the solid yields. Pyrolysis at lower temperatures 
would result in a large amount of char, but properties such as pore structures are sufficiently developed at 
around 500 °C by the complete thermal decomposition of cellulose and hemicelluloses (Lee et al., 2013b). 
Table 2 shows the bamboo biochar properties. 
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Table 2:  Properties of bamboo biochar produced at 500 °C  

Property Value 
Particle density (kg/m3) 1740 ± 10 
Bulk density (kg/m3) 105.1 ± 1.8 
High heating value (MJ/kg) 30.865 ± 0.187 
Proximate analysis (% wet basis)  
Moisture  
Fixed carbon  
Volatile  
Ash  

6.5 ± 1.0 
81.5 ± 0.4 
8.10 ± 1.70 
3.9 ± 0.4 

Elemental Analysis (% dry basis)  
C 82.1 ± 0.6 
H 
N 
S 

2.72 ± 0.02 
0.54 ± 0.05 
0.00116 ± 0.00004 

Oa 14.6 ± 0.6 
a 

By difference 

The bamboo biochar presents a higher particle density and a lower bulk density than the particles of raw 
biomass. A subsequent compression and pelletisation of biochar is indicated for energy densification. Its 
HHV is above 30 MJ/kg, which is as high as anthracite’s HHV. The char produced at 500 °C contained 
about 68 % of the energy content in the raw material.  
The ash content of biochar was smaller compared with sugar cane biochar which contains 8.57 % 
according to Lee et al. (2013b). An additional analysis of the ash composition is required to determine the 
presence of elements like K, Na and Cl that can cause operational problems in combustors.  
The ultimate analysis shows that bamboo biochar is highly carbonaceous, with a carbon content of  
82.1%.The high carbon content of biochar is advantageous in terms of maximizing the amount of carbon 
storage and could be used as an energy resource or for soil adsorption of pollutants (Lee et al., 2013b). 
Two SEM images of the char produced at final reactor temperature of 500 °C are shown in Figure 4. 
 

      

 

Figure 4:  SEM pictures of the bamboo biochar obtained at 500 °C 

The biochar from bamboo developed high porosity, presenting longitudinal pores with sizes ranging from 
micro to macro pores (10-200 µm). The large pores are originated from the vascular bundles of the raw 
biomass and they are important for improving the soil quality as it can provide habitats for symbiotic 
microorganisms (Thies and Rilling, 2009). They can also act as release routes of pyrolytic vapors 
generated in the process (Lee et al., 2013b). Tan et al. (2011) reported that bamboo biochar presents 
good performance as adsorbent for elemental mercury removal from coal combustion, which can be 
improved using physical or chemical activation processes. 

4.  Conclusions  
In this study slow pyrolysis of bamboo Dendrocalamus  giganteus Munro was conducted and the products’ 
yields as a function of the final reactor temperature were determined. Additionally, physical and chemical 
properties of the bamboo biochar produced at 500 °C were characterized in order to verify the main 
characteristics and applications of this product. The characterization of the biochar showed a high carbon 
content. The heating value of the biochar obtained from slow pyrolysis is comparable to most heating 
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values of wood biochars and could therefore be applied as energy source in gasification or combustion 
reactors. Its high porosity and carbon content suggest its application as activated carbon after physical or 
chemical activation. 
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